Resonance Raman spectroscopy in Si and C ion - implanted double - wall carbon nanotubes

نویسندگان

  • G. D. Saraiva
  • A. G. Souza Filho
  • G. Braunstein
  • E. B. Barros
  • J. Mendes Filho
  • E. C. Moreira
  • S. B. Fagan
  • D. L. Baptista
  • Y. A. Kim
  • H. Muramatsu
  • M. Endo
  • M. S. Dresselhaus
چکیده

Citation Saraiva, G. D. et al. " Resonance Raman spectroscopy in Si and C ion-implanted double-wall carbon nanotubes. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The effect of 170 keV Si and 100 keV C ion bombardment on the structure and properties of highly pure, double-wall carbon nanotubes has been investigated using resonance Raman spectroscopy. The implantations were performed at room temperature with ion doses ranging between 1 ϫ 10 13 ions/ cm 2 and 1 ϫ 10 15 ions/ cm 2. As expected, the Si irradiation created more disorder than the C irradiation for the same ion fluence. For both species, as the ion-implantation fluence increased, the D-band intensity increased, while the G-band intensity decreased, indicating increased lattice disorder, in analogous form to other forms of graphite and other nanotube types. The frequency of the G band decreased with increasing dose, reflecting a softening of the phonon mode due to lattice defects. With increasing ion fluence, the radial breathing modes ͑RBMs͒ of the outer tubes ͑either semiconducting or metallic͒ disappeared before the respective RBM bands from the inner tubes, suggesting that the outer nanotubes are more affected than the inner nanotubes by the ion irradiation. After Si ion bombardment to a dose of 1 ϫ 10 15 ions/ cm 2 , the Raman spectrum resembled that of highly disordered graphite, indicating that the lattice structures of the inner and outer nanotubes were almost completely destroyed. However, laser annealing partially restored the crystalline structure of the nanotubes, as evidenced by the re-emergence of the G and RBM bands and the significant attenuation of the D band in the Raman spectrum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonance Raman spectroscopy in one-dimensional carbon materials.

Brazil has played an important role in the development and use of resonance Raman spectroscopy as a powerful characterization tool for materials science. Here we present a short history of Raman scattering research in Brazil, highlighting the important contributions to the field coming from Brazilian researchers in the past. Next we discuss recent and important contributions where Brazil has be...

متن کامل

Raman spectroscopy study of heat-treated and boron- doped double wall carbon nanotubes

Citation Villalpando-Paez, F. et al. " Raman spectroscopy study of heat-treated and boron-doped double wall carbon nanotubes. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your stor...

متن کامل

Raman Scattering of Carbon Nanotubes

The present state of Raman scattering from carbon nanotubes is reviewed. In the first part of the presentation the basic concepts of Raman scattering are elucidated with particular emphasis on resonance scattering. The classical and the quantum-mechanical description are presented and the basic experimental instrumentation and procedures are described. Special Raman techniques are discussed. Ev...

متن کامل

Coupling of Raman radial breathing modes in double-wall carbon nanotubes and bundles of nanotubes.

Measurements of the radial breathing modes from Raman Spectroscopy have been most useful in characterizing the diameters of single-wall carbon nanotubes (SWNT), where there is a simple monotonic relationship between frequency and diameter. Similar correlations have also been used to predict sizes for double and multiple wall nanotubes and for bundles of SWNT. However this can lead to significan...

متن کامل

Probing phonon dispersion relations of graphite by double resonance Raman scattering.

The phonon dispersion relations of graphite can be probed over a wide range of the Brillouin zone by double resonance Raman spectroscopy. The double resonance Raman process provides us with new assignments for the dispersive and nondispersive features observed in the Raman spectra of disordered graphite and carbon nanotubes, some features having been incorrectly assigned previously, or not assi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009